Congress for the New Urbanism

Emergency Response & Street Design Initiative

November 18, 2009: CMAP

CNU Emergency Response & Street Design Initiative

CNU Emergency Response & Street Design Initiative

What is the Initiative?

- Making less than 20 foot clear legal through code changes
- Building an Alliance with Emergency Responders
- Making the Public
 Health Case for
 Narrower Connected
 Street Networks

CNU Emergency Response & Street Design Initiative

Narrower streets are safer streets, but Fire operations must be accommodated

Figure 5.51. Speed versus Pavement Width and Pavement Width Plus Setbacks.

Source: D.T. Smith and D. Appleyard, *Improving the Residential Street Environment—Final Report*, Federal Highway Administration, Washington, DC, 1981, p. 127.

TIME vs. PRODUCTS of COMBUSTION

BEFORE FIRE

- 1) TEST SMOKE ALARMS
- 2) CONDUCT FIRE ESCAPE DRILLS

*U.S. Experience With Smoke Alarms and Other Fire Alarms. NFPA. September 2001.

CNU Emergency Response & Street Design Initiative

Connected and Integrated

CNU Emergency Response & Street Design Initiative

Households per Fire Station

30,000

25,000

20,000

15,000

10,000

5,000

Annualized Per-Capita Life Cycle Costs (based on 2-apparatus station)

Average Citywide Response Time and Connectivity Ratio

Conclusions

- Degree of connectivity directly affects Fire Station service area size
 - Higher connectivity ratios = larger service areas
- Larger service area distributes fixed costs over more households
- Fire station costs are fixed
- Good connectivity = Financial efficiency

Response time = average speed * response distance

To improve response times

Option 1: Increase speeds

Option 2: Reduce response distances

- Keep homes closer to existing firehouses
- Design shorter routes from firehouse to homes

ICC Baltimore code hearings

- <u>CNU fire code amendment</u>: Fire code official may accept less than 20 feet clear, considering connectivity, presence of sprinklers, and adequate turning radii. **Disapproved**.
- <u>CNU Appendix K</u>: Optional for local communities, provides fire code officials guidance on street design for public safety using connected networks of narrower streets. **Approved.**
- <u>F17</u>: "Traffic calming devices are prohibited unless approved by the *fire code official*." This includes street alignment, barriers "and other physical measures intended to reduce traffic and cut-through volumes, and slow vehicle speeds." **Approved.**

ICC: What's next?

- Support CNU code proposals and oppose F17 with public comments through Feb. 8, 2010:
 - www.iccsafe.org/cs/codes/Pages/publicforms.aspx
- Final Action Hearings, May 14-23, 2010, Dallas, Texas.

Figure 5.51. Speed versus Pavement Width and Pavement Width Plus Setbacks.

Source: D.T. Smith and D. Appleyard, Improving the Residential Street Environment—Final Report, Federal Highway Administration, Washington, DC, 1981, p. 127.

www.cnu.org/cnu18

CNU Emergency Response & Street Design Initiative

Next Steps: CNU & CMAP

- Data
- Resources
- Other Emergency Responder Contacts

Heather Smith

hsmith@cnu.org

312-551-7300